2In many genomes, toxin-antitoxin (TA) systems have been identified; however, their role in cell physiology has been unclear. Here we examine the evidence that TA systems are involved in biofilm formation and persister cell formation and that these systems may be important regulators of the switch from the planktonic to the biofilm lifestyle as a stress response by their control of secondary messenger 3,5-cyclic diguanylic acid. Specifically, upon stress, the sequence-specific mRNA interferases MqsR and MazF mediate cell survival. In addition, we propose that TA systems are not redundant, as they may have developed to respond to specific stresses.Toxin-antitoxin (TA) systems typically consist of two genes in an operon which encode a stable toxin that disrupts an essential cellular process (e.g., translation via mRNA degradation) and a labile antitoxin (either RNA or a protein) that prevents toxicity (73). RNA antitoxins are known as type I if they inhibit toxin translation as antisense RNA or type III if they inhibit toxin activity; type II antitoxins are proteins that inhibit toxin activity (48). For type II systems (Fig. 1), the antitoxin also acts as a transcriptional repressor and negatively autoregulates the operon by a conserved palindromic motif in the operator region. TA systems were initially discovered in 1983 as plasmid addiction systems on low-copy-number plasmids due to their ability to stabilize plasmids by postsegregational killing (55). TA systems are also ubiquitous as chromosomal elements; for example, of the 126 prokaryotic genomes (16 archaea and 110 bacteria) searched, 671 TA loci were identified (56). Since this report, their prevalence and diversity have increased; for example, in Escherichia coli alone, the number of TA systems has increased from 5 to 37 (71). However, their role in cell physiology is controversial, with nine possible roles identified (51): addictive genomic debris, stabilization of genomic parasites, selfish alleles, gene regulation, growth control, persister cell formation (persister cells are a small fraction of bacteria that demonstrate resistance to antibiotics without genetic change [50]), programmed cell arrest, programmed cell death, and antiphage measures (28, 57). Although they were first thought to be related to cell death, it remains controversial whether TA systems result in cell death (51, 56); hence, the primary role of these systems has been enigmatic. In this review, we present evidence that TA systems regulate genes other than their own operons, mediate the general stress response, and help direct cells toward the formation of biofilm and persister cells.