SummaryMembers of the MADS-box transcription factor family play essential roles in almost every developmental process in plants. Many MADS-box genes have conserved functions across the flowering plants, but some have acquired novel functions in specific species during evolution. The analyses of MADS-domain protein interactions and target genes have provided new insights into their molecular functions. Here, we review recent findings on MADS-box gene functions in Arabidopsis and discuss the evolutionary history and functional diversification of this gene family in plants. We also discuss possible mechanisms of action of MADS-domain proteins based on their interactions with chromatin-associated factors and other transcriptional regulators.
Key words: MADS-box genes, Plant development, Evolution, Transcriptional regulationIntroduction MADS-domain transcription factors comprise one of the beststudied gene families in plants and members of this family play prominent roles in plant development. Two decades ago, the first MADS-box genes AGAMOUS (AG) from Arabidopsis thaliana (Yanofsky et al., 1990) and DEFICIENS (DEF) from Antirrhinum majus (Schwarz-Sommer et al., 1990) were discovered as regulators of floral organ identity. The sequence of the ~60 amino acid DNA-binding domains within these proteins showed striking similarities to that of the previously characterized proteins serum response factor (SRF) in Homo sapiens (Norman et al., 1988) and Minichromosome maintenance 1 (Mcm1) in Saccharomyces cerevisiae (Passmore et al., 1988). This shared and conserved domain was named the MADS domain (for MCM1, AG, DEF and SRF) and is present in all MADS-domain transcription factor family members (Schwarz-Sommer et al., 1990). Structural analysis of animal and yeast MADS domains showed that the N-terminal and central parts of the MADS domain make contacts with the DNA, while the C-terminal part of this domain contributes mainly to protein dimerization, resulting in a DNA-binding protein dimer consisting of two interacting MADS monomers (e.g. Pellegrini et al., 1995;Huang et al., 2000). Over the past 22 years, many MADS-box gene functions were uncovered in the model species Arabidopsis thaliana and in other flowering plants. Important model plant species for MADS-box gene research include snapdragon (Antirrhinum majus) (reviewed by Schwarz-Sommer et al., 2003), tomato (Solanum lycopersicum), petunia (Petunia hybrida) (Gerats and Vandenbussche, 2005), gerbera (Gerbera hybrida) (Teeri et al., 2006) and rice (Oryza sativa) (reviewed by Yoshida and Nagato, 2011).Initially, MADS-box genes were found to be major players in floral organ specification, but more recent studies revealed functions for MADS-box genes in the morphogenesis of almost all organs and throughout the plant life cycle, from embryo to gametophyte development. The MADS-box gene family in higher plants is significantly larger than that found in animals or fungi, with more than 100 genes in representative flowering plant Development 139, 3081-3098 (2012)
REVIEW Box 1...