MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.