Using photoconductance spectroscopy, we have studied the influence of different types of thermal annealing on epitaxial ZnO thin films where band bending effects play a major role. Once the film is exposed to ambient air conditions after a simple thermal annealing in oxygen at 600 C, the effective energy gap is stable with a value of ≃ 3:15 eV, while after a corresponding annealing in vacuum and subsequent air exposure, it starts at ≃ 3:24 eV, and then it evolves along the days until it reaches the bulk energy gap value of ZnO. By means of valence band x-ray photoemission spectroscopy (XPS), we have confirmed that these phenomena are related via the Franz-Keldysh effect to a downward band bending in the former case and a time dependent upward band bending in the latter one that slowly tends to a flat band condition, tracking the behavior observed in the effective energy gap. Core level XPS measurements suggest that for each type of thermal annealing, a different adsorption kinetics of water and hydrogen take place.