Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
How vertebrate epithelial cells divide in vivo and how the cellular environment influences cell division is currently poorly understood. A sine qua non condition to study cell division in situ is the ease of observation of cell division. This is fulfilled in the Xenopus embryo at the gastrula stage where polarized epithelial cells divide with a high frequency at the surface of the organism. Recently, using this model system, we have shown that epithelial cells divide by asymmetric furrowing and that the mode of cell division is regulated during development. Here, we further characterize epithelial cell division in situ. To this end, we used confocal microscopy to study epithelial cell division in the ectoderm of the Xenopus laevis gastrula. Cell division was followed either by indirect immunofluorescence in fixed embryos or by live imaging of embryos transiently expressing diverse fluorescent proteins. Here, we show that during cytokinesis, the plasma membranes of the two daughter cells are usually separated by a gap. For most divisions, daughter cells make contacts basally at a distance from the furrow tip which creates an inverted teardrop-like shaped volume tightly associated with the furrow. At the end of cytokinesis, the inverted teardrop is resorbed; thus it is a transient structure. Several proteins involved in cytokinesis are localized at the tip of the inverted teardrop suggesting that the formation of the gap could be an active process. We also show that intercalation of neighboring cells between daughter cells occasionally occurs during cytokinesis. Our results reveal an additional level of complexity in the relationship between dividing cells and also with their neighboring cells during cytokinesis in the Xenopus embryo epithelium.
How vertebrate epithelial cells divide in vivo and how the cellular environment influences cell division is currently poorly understood. A sine qua non condition to study cell division in situ is the ease of observation of cell division. This is fulfilled in the Xenopus embryo at the gastrula stage where polarized epithelial cells divide with a high frequency at the surface of the organism. Recently, using this model system, we have shown that epithelial cells divide by asymmetric furrowing and that the mode of cell division is regulated during development. Here, we further characterize epithelial cell division in situ. To this end, we used confocal microscopy to study epithelial cell division in the ectoderm of the Xenopus laevis gastrula. Cell division was followed either by indirect immunofluorescence in fixed embryos or by live imaging of embryos transiently expressing diverse fluorescent proteins. Here, we show that during cytokinesis, the plasma membranes of the two daughter cells are usually separated by a gap. For most divisions, daughter cells make contacts basally at a distance from the furrow tip which creates an inverted teardrop-like shaped volume tightly associated with the furrow. At the end of cytokinesis, the inverted teardrop is resorbed; thus it is a transient structure. Several proteins involved in cytokinesis are localized at the tip of the inverted teardrop suggesting that the formation of the gap could be an active process. We also show that intercalation of neighboring cells between daughter cells occasionally occurs during cytokinesis. Our results reveal an additional level of complexity in the relationship between dividing cells and also with their neighboring cells during cytokinesis in the Xenopus embryo epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.