2018
DOI: 10.1051/0004-6361/201731543
|View full text |Cite
|
Sign up to set email alerts
|

The IACOB project

Abstract: Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims. Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spect… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

10
138
1
6

Year Published

2018
2018
2023
2023

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 84 publications
(155 citation statements)
references
References 105 publications
10
138
1
6
Order By: Relevance
“…Both spectroscopic observations and our interferometric results arrive at relatively high effective temperatures, 40.0 kK and 35.5 kK, respectively, that are well above the 31.9 kK temperature associated with its classification of O9 V (Martins et al 2005). It has been noted in other studies Holgado et al 2018) that the T eff values from the calibrations in Martins et al (2005) are too low for O9 V stars. However, the extended minimum valley in the χ 2 ν diagram (Fig.…”
Section: Spectrophotometrysupporting
confidence: 76%
See 1 more Smart Citation
“…Both spectroscopic observations and our interferometric results arrive at relatively high effective temperatures, 40.0 kK and 35.5 kK, respectively, that are well above the 31.9 kK temperature associated with its classification of O9 V (Martins et al 2005). It has been noted in other studies Holgado et al 2018) that the T eff values from the calibrations in Martins et al (2005) are too low for O9 V stars. However, the extended minimum valley in the χ 2 ν diagram (Fig.…”
Section: Spectrophotometrysupporting
confidence: 76%
“…In Section 4, we gather distance estimates in order to transform the angular diameters into linear radii, and we compare the angular size derived from interferometry with that from model fits of the continuum flux for published values of effective temperature. Bouret et al (2008) · · · · · · · · · 29.5, 3.25 · · · · · · CMFGEN Herrero et al (2002) · · · · · · · · · · · · · · · 35.5, 3.95 FASTWIND Holgado et al (2018) · · · 29.4, 2.90 35.2, 3.50 · · · · · · 35.2, 3.90 IACOB- GBAT Marcolino et al (2009) · · · · · · · · · · · · 32.0, 3.60 · · · TLUSTY Markova et al (2004) 34.0, 3.35 31.0, 3.19 33.6, 3.56 · · · · · · · · · FASTWIND Martins et al (2012) · · · · · · · · · 29.5, 3.25 · · · · · · CMFGEN Martins et al (2015) 34.0, 3.60 29.5, 3.25 35.0, 3.75 · · · 31.0, 3.60 35.0, 4.05 CMFGEN Martins et al (2017) 33.5, 3.50 · · · 35.0, 3.75 · · · · · · · · · CMFGEN Mokiem et al (2005) · · · · · · · · · · · · 32.1, 3.62 36.0, 4.03 FASTWIND Najarro et al (2011) · · · 28.9, 3.01 34.5, 3.70 · · · · · · · · · CMFGEN Puls et al (2006) 35.0, 3.50 29.0, 3.00 33.6, 3.56 · · · · · · · · · FASTWIND Repolust et al (2004) 34.0, 3.50 29.0, 2.97 · · · · · · 32.0, 3.65 · · · FASTWIND Repolust et al (2005) · · · 29.0, 2.88 · · · · · · 33.5, 3.85 · · · FASTWIND Simón- Díaz et al (2006) · · · · · · · · · · · · · · · 36.0, 3.90 FASTWIND (Hummel et al 2013);d -Hummel et al (2013); e -Typical values for a B0 III star (Hummel et al 2013).…”
Section: Introductionunclassified
“…2 shows the values of the a and b coefficients as a function of Z/Z ⊙ and log U. In this figure, the values of the coefficients are calculated interpolating the relations given in It is worth to mention that the expected maximum effective temperature of a young stellar cluster is ∼ 50 kK (e.g., Martins et al 2005;Simón-Díaz et al 2014;Tramper et al 2014;Walborn et al 2014;Wright et al 2015;Crowther et al 2016;Martins & Palacios 2017;Holgado et al 2018) Meanwhile, the T eff − R relation can be applied only for T eff < = 40 kK because, for higher T eff values, small variations of R produce extremely large uncertainties in T eff estimations (Dors et al 2017). Kennicutt et al (2000) derived a calibration between T eff and the He IIλ5876/Hβ and He IIλ6678/Hβ emission-line ratios, and they also pointed out a similar difficulty in deriving effective temperature values higher than ∼40kK.…”
Section: Nebular Parameter Determinationsmentioning
confidence: 99%
“…Stellar winds modify the outer atmospheric layers of hot massive stars through their outflow velocity field, which affects the formation of stronger spectral lines through Doppler shifts and a modified more extended mass density stratification, which causes additional wind emission (see Kudritzki & Puls 2000 for a review). It is, therefore, important to constrain the strengths of stellar wind line emission, which in the case of optical hydrogen and helium lines depends on the parameter Q ∼Ṁ (R v ∞ ) −3/2 , whereṀ and v ∞ are the stellar wind mass-loss rate and the terminal velocity of the wind outflow, respectively (see Puls et al 2005;Holgado et al 2018). Terminal velocities are usually constrained through the observation of UV resonance lines of highly ionized metal lines, which show so-called P-Cygni profiles.…”
Section: Stellar Mass-lossmentioning
confidence: 99%