Leaf functional traits are the essential components of adaption plant strategies and have different responses to various environments, but our knowledge of how plants adapt to highly complex urban environments through coordinated changes in leaf functional traits is limited. In this study, we studied the response of landscape plants to the environments of sports field (SF), park (PAR), residential green space (RES), and greenway (GW), and analyzed the effects of the different green space environments on trade-off strategies of plants based on leaf functional traits. The results showed that leaf functional traits of plants and adaptation strategies varied among different urban environments in Lanzhou, China. Leaf length (LL), width (LW), area (LA), and special leaf area (SLA) were PAR > SF > RES > GW. Leaf nitrogen (LNC) and phosphorus content (LPC) were SF > PAR > RES > GW. Leaf carbon content (LCC), leaf dry matter content (LDMC), the ratio of leaf carbon and nitrogen (C/N), and the ratio of leaf carbon and phosphorus (C/P) was GW > RES > PAR > SF. The landscape plants in SF and PAR were more adaptive to the urban environment than those in RES and GW. Among different green space environments, landscape plants in SF and PAR tended to have an acquisitive strategy with high LL, LW, LA, SLA, LNC, and LPC. In contrast, plants in RES and GW tended to have a conservative strategy with a high level of concentration of LCC, LDMC, C/N, and C/P.