Fractures play a vital role in reservoir transformation, but the distribution of faults and fractures is difficult to obtain by observing cores, which ultimately limits the effective development of gas dolomite reservoirs. We propose an integrated method that incorporates thin-section observations, three-dimensional (3D) seismic data, and image logs to interpret the distribution of faults and fractures of Cambrian Longwangmiao Carbonate Formation to predict potential development areas in the Moxi-Gaoshiti area of the Sichuan Basin, South China. Firstly, the faults were well interpreted by using the automatic tracking and 3D visualization technique based on the new seismic combination attribute of symmetry and ant tracking. Secondly, a comprehensive analysis was conducted using the thin sections, paleogeomorphology, and in situ test results to determine the fracture types (corrosion and structural fractures). The results help us to find potential sweet spot zones with good permeabilities, which is of great significance in reducing the risk of water production of drilled wells in the field development.