Measured concentrations of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil and groundwater detected in an industrial contaminated site were used to test several probabilistic options for refining site-specific ecological risks assessment, ranging from comparison of single effects and exposure values through comparison of probabilistic distributions for exposure and effects to the use of distribution based quotients (DBQs) obtained through Monte Carlo simulations. The results of the deterministic approach, which suggest that risk exceeds a level of concern for soil organisms, were influenced mainly by the presence of hot spots reaching concentrations able to affect acutely a large proportion of species, while the large majority of the area presents 1,2,4-TCB concentrations below those reported as toxic. Ground-(pore)water concentrations were compared with aquatic ecotoxicity data in order to obtain an estimation of the potential risk for aquifers and streams in the adjacent area as well as for soil-dwelling organisms exposed via pore water. In this case, the risk is distributed over a large proportion of the site, while the local risk of hot spots was low, showing that risk characterization based exclusively on soil concentrations might be insufficient.