Objective
The mechanism by which mesenchymal stem cell (MSC) transplantation alleviates atherosclerosis in systemic lupus erythematosus (SLE) remains elusive. In this study, we aim to explore the efficacy and mechanism of MSC in ameliorating atherosclerosis in SLE.
Methods
ApoE−/− and Fas−/− mice on the B6 background were cross-bred to generate SLE mice with atherosclerosis. Myeloid-derived suppressor cells (MDSCs) were sorted and quantified. The apoE−/−Fas−/− mice were either treated with anti-Gr antibody or injected with MDSCs. The lupus-like autoimmunity and atherosclerotic lesions were evaluated. Furthermore, the apoE−/−Fas−/− mice were transplanted with MSCs and lupus-like autoimmunity and atherosclerotic lesions were assessed.
Results
MDSCs in peripheral blood, spleen, draining lymph nodes increased in apoE−/−Fas−/− mice compared with B6 mice. Moreover, the adoptive transfer of MDSCs aggravated both atherosclerosis and SLE pathologies, whereas depleting MDSCs ameliorated those pathologies in apoE−/−Fas−/− mice. MSC transplantation in apoE−/−Fas−/− mice decreased the percentage of MDSCs, alleviated the typical atherosclerotic lesions, including atherosclerotic lesions in aortae and liver, and reduced serum cholesterol, triglyceride and low-density lipoprotein levels. MSC transplantation also reduced SLE pathologies, including splenomegaly, glomerular lesions, anti-dsDNA antibody in serum, urine protein and serum creatinine. Moreover, MSC transplantation regulated the generation and function of MDSCs through secreting prostaglandin E 2 (PGE2).
Conclusion
Taken together, these results indicated that the increased MDSCs contributed to atherosclerosis in SLE. MSC transplantation ameliorated the atherosclerosis and SLE through reducing MDSCs by secreting PGE2.
Graphical Abstract