In mammals, early-life probiotic supplementation is a promising tool for preventing unfavourable, gut microbiome-related behavioural, immunological, and aromatic amino acid alterations later in life. In laying hens, feather-pecking behaviour is proposed to be a consequence of gut-brain axis dysregulation. Lactobacillus rhamnosus decreases stress-induced severe feather pecking in adult hens, but whether its effect in pullets is more robust is unknown. Consequently, we investigated whether early-life, oral supplementation with a single Lactobacillus rhamnosus strain can prevent stress-induced feather-pecking behaviour in chickens. To this end, we monitored both the short- and long-term effects of the probiotic supplement on behaviour and related physiological parameters. We hypothesized that L. rhamnosus would reduce pecking behaviour by modulating the biological pathways associated with this detrimental behaviour, namely aromatic amino acid turnover linked to neurotransmitter production and stress-related immune responses. We report that stress decreased the proportion of cytotoxic T cells in the tonsils (P = 0.047). Counteracting this T cell depression, birds receiving the L. rhamnosus supplementation significantly increased all T lymphocyte subset proportions (P < 0.05). Both phenotypic and genotypic feather peckers had lower plasma tryptophan concentrations compared to their non-pecking counterparts. The probiotic supplement caused a short-term increase in plasma tryptophan (P < 0.001) and the TRP:(PHE + TYR) ratio (P < 0.001). The administration of stressors did not significantly increase feather pecking in pullets, an observation consistent with the age-dependent onset of pecking behaviour. Despite minimal changes to behaviour, our data demonstrate the impact of L. rhamnosus supplementation on the immune system and the turnover of the serotonin precursor tryptophan. Our findings indicate that L. rhamnosus exerts a transient, beneficial effect on the immune response and tryptophan catabolism in pullets.