Microbiologically influenced corrosion (MIC) poses considerable challenges in various industries, prompting the exploration of advanced materials to mitigate microbial threats. This study successfully synthesized nanoscale vermiculite (VMT) from natural seawater and utilized it as a foundation to integrate magnetic nanoparticles (Fe 3 O 4 ) and chlorhexidine acetate (CA) for inhibiting MIC. A comprehensive investigation encompassing the synthesis, characterization, and application of these VMT/Fe 3 O 4 / CA composites was conducted to evaluate their antimicrobial effectiveness against Escherichia coli, Staphylococcus aureus, and sulfate-reducing bacteria (SRB), demonstrating an efficacy exceeding 99.5%. Moreover, the composite material demonstrated the capability to align with a magnetic field, enabling precise drug targeting and release, thereby facilitating biofilm removal. This research makes a significant contribution to the advancement of intelligent, efficient, and eco-friendly corrosion protection solutions.