Background
Rapid detection, early resuscitation, and appropriate antibiotic use are crucial for sepsis care. Accurate identification of the site of infection may facilitate a timely provision of appropriate care. We aimed to investigate the relationship between misdiagnosis of the site of infection at initial examination and in-hospital mortality.
Methods
This was a secondary-multicenter prospective cohort study involving 37 emergency departments. Consecutive adult patients with infection from December 2017 to February 2018 were included. Misdiagnosis of the site of infection was defined as a discrepancy between the suspected site of infection at initial examination and that at final diagnosis, including those infections remaining unidentified during hospital admission, whereas correct diagnosis was defined as site concordance. In-hospital mortality was compared between those misdiagnosed and those correctly diagnosed.
Results
Of 974 patients included in the analysis, 11.6% were misdiagnosed. Patients diagnosed with lung, intra-abdominal, urinary, soft tissue, and CNS infection at the initial examination, 4.2%, 3.8%, 13.6%, 10.9%, and 58.3% respectively, turned out to have an infection at a different site. In-hospital mortality occurred in 15%. In both generalized estimating equation (GEE) and propensity score-matched models, misdiagnosed patients exhibited higher mortality despite adjustment for patient background, site infection, and severity. The adjusted odds ratios (misdiagnosis vs. correct diagnosis) for in-hospital mortality were 2.66 (95% CI, 1.45–4.89) in the GEE model and 3.03 (95% CI, 1.24–7.38) in the propensity score-matched model. The difference in the absolute risk in the GEE model was 0.11 (0.04–0.18).
Conclusions
Among patients with infection, misdiagnosed site of infection is associated with a > 10% increase in in-hospital mortality.
Electronic supplementary material
The online version of this article (10.1186/s13054-019-2475-9) contains supplementary material, which is available to authorized users.