The COVID-19 pandemic has underscored the necessity for strategic approaches to manage global catastrophes. This study argues that disaster risk management (DRM) is an essential approach to mitigate the impact of global calamities, such as a pandemic. However, due to the uncertainty emerging from variables such as time and demand, managing DRM effectively involves high complexity. Blockchain technology (BcT) can be implemented to help address these challenges due to its potential to build trust, transparency, and accountability in complex operations. However, no research has quantitatively examined the applicability of BcT in the sub-dimensions of DRM to address the COVID-19 pandemic. The goal and scope of this study is to explore the role of BcT in DRM operations during the COVID-19 pandemic through an Intuitionistic Fuzzy Multi-Criteria Decision Making (IF-MCDM) framework. More specifically, the Intuitionistic Fuzzy Analytic Network Process (IF-ANP) method was utilized to calculate the weights of key criteria (i.e., BcT benefits), while Intuitionistic Fuzzy VIKOR (IF-VIKOR) was used to prioritize the alternatives (i.e., the sub-dimensions of DRM). The findings of this study are threefold. First, supporting
effective coordination
turned out to be the most essential benefit of BcT to build resilience in response to the COVID-19 pandemic. Second,
disaster management
was found to be the most appropriate DRM sub-dimension for possible BcT implementation during the COVID-19 pandemic. Lastly, eleven distinct activities involved in
disaster management
and
governance and financial protection
were discovered to be the most applicable for BcT. The findings of this study could assist disaster risk managers to assess whether (or not) BcT is suitable for the sub-dimensions of DRM to build national and organizational resilience in the wake of the COVID-19 pandemic.