2012
DOI: 10.1002/jae.2265
|View full text |Cite
|
Sign up to set email alerts
|

The impact of data revisions on the robustness of growth determinants—a note on ‘determinants of economic growth: Will data tell?’

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
34
0

Year Published

2012
2012
2024
2024

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 57 publications
(34 citation statements)
references
References 7 publications
0
34
0
Order By: Relevance
“…As a robustness check, we also study alternative prior setups. To this end, we employ the benchmark g-priors for parameters suggested by Fernandez et al (2001) along with the beta-binomial model prior for the model space, which gives each model size equal prior probability (Ley & Steel, 2009); we also use the data-dependent hyper-g prior suggested by Feldkircher & Zeugner (2012), which should be less sensitive to noise in the data. the posterior model probability (that is, how well the model fits the data relative to its size).…”
Section: Estimation and Resultsmentioning
confidence: 99%
“…As a robustness check, we also study alternative prior setups. To this end, we employ the benchmark g-priors for parameters suggested by Fernandez et al (2001) along with the beta-binomial model prior for the model space, which gives each model size equal prior probability (Ley & Steel, 2009); we also use the data-dependent hyper-g prior suggested by Feldkircher & Zeugner (2012), which should be less sensitive to noise in the data. the posterior model probability (that is, how well the model fits the data relative to its size).…”
Section: Estimation and Resultsmentioning
confidence: 99%
“…This is examined by Feldkircher and Zeugner (2012), who find that changes in the sample play an important role, not least because the countries which move in and out of the sample tend to be African ones that are especially likely to be outliers. Nevertheless, even after restricting attention to a fixed sample, some instability remains.…”
Section: Resultsmentioning
confidence: 99%
“…Since we use the bma package in R (Feldkircher & Zeugner, 2012), our BMA does not estimate all of the 2 32 possible combinations of models but uses Markov Chain Monte Carlo samplers that propose the candidate models to be estimated (estimating all of the models would take several months). The estimated BMA coefficients, posterior means, are averages of the coefficients across all of the models, weighted by the posterior model probability.…”
Section: Variables and Estimationmentioning
confidence: 99%