Arginine (Arg) is an important amino acid of pig fetal development; however, whether Arg improves postnatal performance is ill-defined. Therefore, the influence of Arg supplementation at different gestational stages on offspring performance was evaluated in a commercial swine herd. Sows (n = 548) were allocated into 4, diet by stage of gestation treatments: Control (n = 143; 0% suppl. Arg), or dietary treatments supplemented with 1% L-Arg (free-base; Ajinomoto Animal Nutrition North America, Inc., Chicago, IL): from 15 to 45 d of gestation (n = 138; Early-Arg); 15 d of gestation to farrowing (n = 139; Full-Arg); and from day 85 of gestation to farrowing (n = 128; Late-Arg). All offspring were individually identified and weighed at birth; at weaning, a subset was selected for evaluation of carcass performance at market. All data were analyzed using birth weight (BiWt) and age as covariates. Wean weights (WW) and prewean (PW) ADG tended to increase (P = 0.06) in progeny from sows supplemented with Arg, as compared to progeny from Control sows. Preplanned contrast comparisons revealed an increased (P = 0.03) BiWt for pigs from sows receiving 1% L-Arg prior to day 45 of gestation (Early-Arg and Full-Arg; 1.38 kg/pig), as compared to pigs from sows not supplemented prior to day 45 of gestation (Control and Late-Arg; 1.34 kg/pig). No difference in BiWt was observed (1.36 kg/pig; P = 0.68) for Arg supplementation after day 85 of gestation (Full-Arg and Late-Arg), as compared to those not receiving Arg supplementation after day 85 (Control and Early-Arg); although WW and PW ADG were greater (P = 0.02), respectively. A 3.6% decrease (P = 0.05) in peak lean accretion ADG occurred when dams received 1% L-Arg prior to day 45 of gestation (Early-Arg and Full-Arg), however, no other significant differences were detected in finishing growth parameters or carcass characteristics (P ≥ 0.1). Pig mortality rates tended (P = 0.07) to decrease in progeny of dams supplemented Arg after day 85 (3.6%) compared to dams not provided additional Arg during late gestation (4.9%). Collectively, these data suggest that Arg provided during late gestation may improve WW and PW ADG, however, finishing performance was not affected. While Arg supplementation provided some moderate production benefits, further investigation is warranted to comprehensively understand the gestational timing and biological role of Arg supplementation during fetal and postnatal development in commercial production systems.