Purpose
This paper aims to investigate the conditional equicorrelation and cross-quantile dependence between the DeFi, European and GCC currency markets (Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates).
Design/methodology/approach
This study applies the GARCH-DECO model and cross-quantilogram framework.
Findings
The findings reveal evidence of weak and negative average equicorrelations between the examined markets through time, excluding the COVID-19 outbreak and Russia–Ukraine conflict, which is consistent with the literature examining relationships in different markets. From the cross-quantilogram model, the authors note that the dependence between DeFi, EURO and GCC foreign exchange rate markets is greatest in the short run and diminishes over the medium- and long-term horizons, indicating rapid information processing between the markets under consideration, as most innovations are transmitted in the short term.
Practical implications
For the pairs of DeFi and currency markets, the static and dynamic optimal weights and hedging ratios are also estimated, providing new empirical data for portfolio managers and investors.
Originality/value
To the best of the authors’ knowledge, this is one of the most important research looking into the conditional correlation and predictability between the DeFi, EURO and GCC foreign exchange markets. More importantly, this study provides the first empirical proof of the safe-haven, hedging and diversification qualities of DeFi, EURO and GCC currencies, and this work also covers the COVID-19 pandemic and the Russia–Ukraine war with the use of a single dynamic measure produced by the GARCH-DECO model. In addition, the directional predictability between variables under consideration using the cross-quantilogram model is examined, which can be capable of capturing the asymmetry in the quantile dependent structure. The findings are helpful for both policymakers and investors in improving their trading selections and strategies for risk management in different market conditions.