Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Forests are widely distributed in terrestrial ecosystems, covering about one-third of the global land area. They play a key role in sequestering carbon, releasing oxygen, mitigating climate change, and maintaining ecosystem balance. The ecology of the Tibetan Plateau is very fragile, but the impact of environmental change on regional forest ecosystems is not yet clear. Located in the Eastern Tibetan Plateau, the Shaluli Mountain has the richest biodiversity and the widest distribution of forests on the Tibetan Plateau. Assessing the dynamics of forest change is the basis for correctly formulating forest management measures, and is important for regional biodiversity conservation. However, traditional field surveys have the shortcomings of high cost, being time-consuming, and having poor regional coverage in forest dynamics monitoring. Remote sensing methods can make up for these shortcomings. Therefore, in this study, satellite remote sensing images were used to extract forest information from 2000 to 2020 in Shaluli Mountain, and the main drivers of forest change were analyzed with full consideration of the Spatially Stratified Heterogeneity (SSH) of environmental factors. The results found that the forest area increased from 23,144.20 km2 in 2000 to 28,429.53 km2 in 2020, and the average Percentage of Forest Cover (PFC) increased from 19.76% to 21.67%, with significant improvement in forest growth. The annual minimum temperature (TMN), altitude, annual maximum temperature (TMX), and annual precipitation (PRE) were the main driving factors of forest change, with an average driving power (q-value) of 0.4877, 0.2706, 0.2342, and 0.2244, and TMN was the primary limiting factor for forest growth. In addition, the driving power of all environmental factors on forest change increased from 2000 to 2020. The results of this study can provide a basis for the development of forest management strategies, and provide reference materials for regional biodiversity conservation.
Forests are widely distributed in terrestrial ecosystems, covering about one-third of the global land area. They play a key role in sequestering carbon, releasing oxygen, mitigating climate change, and maintaining ecosystem balance. The ecology of the Tibetan Plateau is very fragile, but the impact of environmental change on regional forest ecosystems is not yet clear. Located in the Eastern Tibetan Plateau, the Shaluli Mountain has the richest biodiversity and the widest distribution of forests on the Tibetan Plateau. Assessing the dynamics of forest change is the basis for correctly formulating forest management measures, and is important for regional biodiversity conservation. However, traditional field surveys have the shortcomings of high cost, being time-consuming, and having poor regional coverage in forest dynamics monitoring. Remote sensing methods can make up for these shortcomings. Therefore, in this study, satellite remote sensing images were used to extract forest information from 2000 to 2020 in Shaluli Mountain, and the main drivers of forest change were analyzed with full consideration of the Spatially Stratified Heterogeneity (SSH) of environmental factors. The results found that the forest area increased from 23,144.20 km2 in 2000 to 28,429.53 km2 in 2020, and the average Percentage of Forest Cover (PFC) increased from 19.76% to 21.67%, with significant improvement in forest growth. The annual minimum temperature (TMN), altitude, annual maximum temperature (TMX), and annual precipitation (PRE) were the main driving factors of forest change, with an average driving power (q-value) of 0.4877, 0.2706, 0.2342, and 0.2244, and TMN was the primary limiting factor for forest growth. In addition, the driving power of all environmental factors on forest change increased from 2000 to 2020. The results of this study can provide a basis for the development of forest management strategies, and provide reference materials for regional biodiversity conservation.
Climate change and anthropogenic activities have increased the complexity of hydrology–soil–vegetation interactions in arid-region irrigation areas. Therefore, studies on the spatiotemporal characteristics of these interactions can greatly benefit the sustainable development of arid areas. This study developed a spatially granular dataset of the key hydrology, soil, and vegetation elements for the Hetao Irrigation District (HID) for 2000–2020, recognized as the largest single-port artesian irrigation area in Asia, and explored the interactions between these elements by means of a geodetector, the analytic hierarchy process, and the Pearson correlation coefficient. The key results indicated the following: (1) a declining trend of 0.1–0.15 in the comprehensive influence of hydrology–soil–vegetation interactions; increasing significance of hydrologically driven soil and vegetation evolution, with feedback between soil and vegetation; (2) the maximization of the interactions between soil moisture and precipitation and groundwater, with evapotranspiration as the dominant factor regulating hydrology–vegetation interactions; (3) the interactions between hydrology, soil, and vegetation showing nonlinear synergism; (4) and the spatial distributions of the hydrology–soil–vegetation interactions showing significant band-like patterns with weak coupling between the elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.