2019
DOI: 10.1007/s10664-018-9679-5
|View full text |Cite
|
Sign up to set email alerts
|

The impact of feature reduction techniques on defect prediction models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
66
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 81 publications
(71 citation statements)
references
References 59 publications
3
66
0
2
Order By: Relevance
“…Clearly, there was no significant difference in the performance of the FS methods, as their respective performance and effect varies from dataset to dataset and the choice of classification algorithm. This research outcome is related to the findings from Xu et al [29], Kondo et al [31] and Muthukumaran et al [30]. Although on average, FSS methods proved to be better than FFR methods.…”
Section: Resultssupporting
confidence: 69%
See 1 more Smart Citation
“…Clearly, there was no significant difference in the performance of the FS methods, as their respective performance and effect varies from dataset to dataset and the choice of classification algorithm. This research outcome is related to the findings from Xu et al [29], Kondo et al [31] and Muthukumaran et al [30]. Although on average, FSS methods proved to be better than FFR methods.…”
Section: Resultssupporting
confidence: 69%
“…Recent studies have compared the impact of FS methods on the performance of SDP [26][27][28][29][30][31][32]. Some studies conclude that some of the FS methods are better than others [27,28,30,31], while some studies claimed that there is no significant difference between the performances of FS methods in SDP [26,29,32]. This contradiction and inconsistency in results by existing studies may be due to the choice of search mechanism used in FS methods.…”
Section: Introductionmentioning
confidence: 99%
“…Clearly, there was no significant difference in the performance of the feature subset methods, as their respective performance and effect varies from dataset to dataset and the choice of classification algorithm. This research outcome is similar to the findings from [60,61,62].…”
Section: With Feature Subset Selectionsupporting
confidence: 87%
“…30 www.mediawiki.org (accedido 1/2020) 31 es.wikipedia.org (accedido 1/2020) 32 wikimediafoundation.org (accedido 1/2020) 33 www.mediawiki.org/wiki/MediaWiki (accedido 1/2020) 34 Según Siteviews: tools.wmflabs.org/siteviews (accedido 1/2020) 35 Según Alexa: www.alexa.com/siteinfo/wikipedia.org (accedido 1/2020). 36 mariadb.org (accedido 1/2020) 37 GNU General Public License, disponible online en www.gnu.org/licenses/gpl-3.0.html (accedido 1/2020) MediaWiki es desarrollado siguiendo un modelo de integración continua, donde los cambios en el código fuente se despliegan directamente en los sitios de Wikimedia Foundation, tales como Wikipedia, de forma regular.…”
Section: Figura 43: Captura De Pantalla De La Herramienta Para Clasiunclassified
“…Recientemente Kondo [36] ha explorado el modo en que se pueden seleccionar o combinar las métricas con las que se construyen modelos (técnicas de feature selection y feature reduction). La necesidad de reducir la cantidad de métricas aparece cuando la cantidad de información (muestra) es pequeña, algo que sucede en proyectos nuevos y atenta contra los resultados que pueden proveer los modelos.…”
Section: Figura 68: Gráfica De La Matriz De Confusión Obtenida a Parunclassified