Production of biofuel feedstocks in agricultural landscapes will result in land use changes that may have major implications for arthropod-mediated ecosystem services such as pollination and pest suppression. By comparing the abundance and diversity of insect pollinators and generalist natural enemies in three model biofuel crops: corn, switchgrass, and mixed prairie, we tested the hypothesis that biofuel crops comprised of more diverse plant communities would support increased levels of beneficial insects. These three biofuel crops contained a diverse bee community comprised of 75 species. Overall, bees were three to four times more abundant in switchgrass and prairie than in corn, with members of the sweat bee (Halictidae) and small carpenter bee (Ceratina spp.) groups the most abundant. Switchgrass and prairie had significantly greater bee species richness than corn during the July sampling period. The natural enemy community at these sites was dominated by lady beetles (Coccinellidae), long-legged flies (Dolichopodidae), and hover flies (Syrphidae) which varied in their response to crop type. Coccinellids were generally most abundant in prairie and switchgrass, with the exception of the pollen feeding Coleomegilla maculata that was most abundant in corn. Several rare or declining coccinellid species were detected in prairie and switchgrass sites. Dolichopodidae were more abundant in prairie and switchgrass while Syrphidae showed no significant response to crop type. Our results indicate that beneficial insects generally responded positively to the increased vegetational diversity of prairie and switchgrass sites; however, when managed as a dedicated biofuel crop, plant and arthropod diversity in switchgrass may decrease. Our findings support the hypothesis that vegetationally diverse biofuel crops support higher abundance and diversity of beneficial insects. Future policy regarding the production of biofuel feedstocks should consider the ecosystem services that different biofuel crops may support in agricultural landscapes.