This paper addresses the problem of finding an analytical expression for the end-to-end Average Bit Error Rate (ABER) in multihop Decode-and-Forward (DAF) routes within the context of wireless networks. We provide an analytical recursive expression for the most generic case of any number of hops and any single-hop ABER for every hop in the route. Then, we solve the recursive relationship in two scenarios to obtain simple expressions for the end-to-end ABER, namely: (a) The simplest case, where all the relay channels have identical statistical behaviour; (b) The most general case, where every relay channel has a different statistical behaviour. Along with the theoretical proofs, we test our results against simulations. We then use the previous results to obtain closed analytical expressions for the end-to-end ABER considering DAF relays over Nakagami-fading channels and with various modulation schemes. We compare these results with the corresponding expressions for Amplify-and-Forward (AAF) and, after corroborating the theoretical results with simulations, we conclude that DAF strategy is more advantageous than the AAF over Nakagami-fading channels as both the number of relays and-index increase. Index Terms-Bit error rate, end-to-end performance, decode and forward, amplify and forward, fading channel, multihop wireless networks. Eduardo Morgado received a degree in telecommunication engineering from the University Carlos III de Madrid, Spain, in 2004 and the PhD degree from the University Rey Juan Carlos, Spain, in 2009. Currently, he is an associate professor in the