Symbolic, spatial, and visual information, which is important for comprehending and learning physical and natural sciences, is not readily accessible to blind and low-vision (BLV) students in the undergraduate chemistry classroom, laboratory, and virtual environment via conventional means (through print and images), thus, creating a disadvantageous and inequitable situation. Appropriate instruction methods can be used to include these differently abled students in the learning process while also enhancing the learning outcomes of a diverse student population. By considering the teaching approach and universal design practices, and utilizing adapted methods, collaborative learning, and nonvisual assistive technologies and equipment, chemistry classroom/ laboratory work for BLV students can be transformed from a passive experience to an active one. By creating the least restrictive learning environment, BLV students are enabled to become independent workers. Nonvisual ways (i.e., auditory, and text-to-speech applications, speech-enabled equipment, tactile graphics, and physical artifacts) by which BLV students can conduct their work are described, and practical ways for faculty to enhance teaching are presented.