In the early 1990s, the concept of circular economy was proposed by Pearce and Turner (1990) as a model to transform the traditional open-ended economy into an ongoing closed-loop system from a material perspective. Since then, several scholars and practitioners have adopted multiple definitions for circularity (Winans et al. 2017). After considering 114 conceptual frameworks, Kirchherr et al. (2017) define it as an economic system that substitutes product end-of-life with a set of circularity interventions.Circularity interventions are actions or processes that preserve resources inside the economy (Lieder and Rashid 2016a;Bocken et al. 2017). Such actions are based on three principles (Ellen MacArthur Foundation 2013;Ghisellini et al. 2016):
AbstractEnvironmentally extended input-output analysis (EEIOA) can be applied to assess the economic and environmental implications of a transition towards a circular economy. In spite of the existence of several such applications, a systematic assessment of the opportunities and limitations of EEIOA to quantify the impacts of circularity strategies is currently missing. This article brings the current state of EEIOA-based studies for assessing circularity interventions up to date and is organised around four categories: residual waste management, closing supply chains, product lifetime extension, and resource efficiency. Our findings show that residual waste management can be modelled by increasing the amount of waste flows absorbed by the waste treatment sector. Closing supply chains can be modelled by adjusting input and output coefficients to reuse and recycling activities and specifying such actions in the EEIOA model if they are not explicitly presented. Product lifetime extension can be modelled by combining an adapted final demand with adjusted input coefficients in production. The impacts of resource efficiency can be modelled by lowering input coefficients for a given output. The major limitation we found was that most EEIOA studies are performed using monetary units, while circularity policies are usually defined in physical units. This problem affects all categories of circularity interventions, but is particularly relevant for residual waste management, due to the disconnect between the monetary and physical value of waste flows. For future research, we therefore suggest the incorporation of physical and hybrid tables in the assessment of circularity interventions when using EEIOA.