Targeting dependable communications for industrial Internet of Things applications, IETF 6TiSCH provides mechanisms for efficient scheduling, routing, and forwarding of IPv6 traffic across low-power mesh networks. Yet, despite an overwhelming body of literature covering both centralized and distributed scheduling schemes for 6TiSCH, an effective control solution for large-scale multi-hop mesh networks remains an open challenge. Our paper fills this gap with a novel approach that eliminates much of the routing and link-layer overhead incurred by centralized schedulers, and provides a robust mechanism for data dissemination synchronization within 6TiSCH. Specifically, we leverage the physical layer (PHY) switching capabilities of modern low-power wireless platforms to build on recent work demonstrating the viability of Concurrent Transmission (CT)-based flooding protocols across the Bluetooth 5 (BT 5) PHYs. By switching the PHY and MAC layer at runtime, we inject a BT 5-based CT flood within a standard IEEE 802.15.4 TSCH slotframe, thereby providing a reliable, low-latency scheme for 6TiSCH control messaging. We present an analytical model and experimental evaluation showing how our solution not only exploits the BT 5 high data-rate PHYs for rapid data dissemination, but can also provide reliable 6TiSCH association and synchronization even under external radio interference. We further discuss how the proposed technique can be used to address other open challenges within the standard.