Kiteboarding is an aquatic sporting discipline that has not yet been considered in the literature to date in terms of solar ultraviolet radiation (UVR) measurement. Kiteboarders need to look upward and are placed obliquely relative to the horizon when towed behind an overhead kite over a reflective water surface. This research defines the typical body surface orientation of a kiteboarder in motion through video vector analysis and demonstrates the potential risk to ocular and skin surface damage through practical measurement of solar UVR using a manik in model. Video analysis of 51 kiteboarders were made to construct skeletal wireframe s showing the surface orientation of the leg, thigh, spine, humerus, lower arm and head of a typical kiteboarder. Solar UVR dosimeter measurements made using a manikin model demonstrate that the vertex and anterior surfaces of the knee, lower leg, and lower humerus received 89%, 90%, 80% and 63% of the available ambient UVR respectively for a typical kiteboarder who is tilted back more than 15 o from vertical while in motion. Ocular (periorbital) exposures ranged from 56 to 68% of ambient. These new findings show that the anterior skin surfaces of kiteboarders and the eye are at elevated risk of solar UVR damage.