Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
River and lake health assessment (RLHA) is an important approach to alleviating the conflict between protecting river and lake ecosystems and fostering socioeconomic development, aiming for comprehensive protection, governance, and management. Vegetation, a key component of the riparian zone, supports and maintains river and lake health (RLH) by providing a range of ecological functions. While research on riparian zone vegetation is ongoing, these studies have not yet been synthesized from the perspective of integrating RLHA with the ecological functions of riparian zone vegetation. In this paper, based on the bibliometric method, the relevant literature studies on the topics of RLHA and unmanned aerial vehicle (UAV) remote sensing of vegetation were screened and counted, and the keywords were highlighted, respectively. Based on the connotation of RLH, this paper categorizes the indicators of RLHA into five aspects: water space: the critical area from the river and lake water body to the land in the riparian zone; water resources: the amount of water in the river and lake; water environment: the quality of water in the river and lake; water ecology:aquatic organisms in the river and lake; and water services:the function of ecosystem services in the river and lake. Based on these five aspects, this paper analyzes the key role of riparian zone vegetation in RLHA. In this paper, the key roles of riparian zone vegetation in RLHA are summarized as follows: stabilizing riverbanks, purifying water quality, regulating water temperature, providing food, replenishing groundwater, providing biological habitats, and beautifying human habitats. This paper analyzes the application of riparian zone vegetation ecological functions in RLH, summarizing the correlation between RLHA indicators and these ecological functions. Moreover, this paper analyzes the advantages of UAV remote sensing technology in the quantitative monitoring of riparian zone vegetation. This analysis is based on the high spatial and temporal resolution characteristics of UAV remote sensing technology and focuses on monitoring the ecological functions of riparian zone vegetation. On this basis, this paper summarizes the content and indicators of UAV quantitative remote sensing monitoring of riparian zone vegetation for RLHA. It covers several aspects: delineation of riparian zone extent, identification of vegetation types and distribution, the influence of vegetation on changes in the river floodplain, vegetation cover, plant diversity, and the impact of vegetation distribution on biological habitat. This paper summarizes the monitoring objects involved in monitoring riparian zones, riparian zone vegetation, river floodplains, and biological habitats, and summarizes the monitoring indicators for each category. Finally, this paper analyzes the challenges of UAV quantitative remote sensing for riparian zone vegetation at the current stage, including the limitations of UAV platforms and sensors, and the complexity of UAV remote sensing data information. This paper envisages the future application prospects of UAV quantitative remote sensing for riparian zone vegetation, including the development of hardware and software such as UAV platforms, sensors, and data technologies, as well as the development of integrated air-to-ground monitoring systems and the construction of UAV quantitative remote sensing platforms tailored to actual management applications.
River and lake health assessment (RLHA) is an important approach to alleviating the conflict between protecting river and lake ecosystems and fostering socioeconomic development, aiming for comprehensive protection, governance, and management. Vegetation, a key component of the riparian zone, supports and maintains river and lake health (RLH) by providing a range of ecological functions. While research on riparian zone vegetation is ongoing, these studies have not yet been synthesized from the perspective of integrating RLHA with the ecological functions of riparian zone vegetation. In this paper, based on the bibliometric method, the relevant literature studies on the topics of RLHA and unmanned aerial vehicle (UAV) remote sensing of vegetation were screened and counted, and the keywords were highlighted, respectively. Based on the connotation of RLH, this paper categorizes the indicators of RLHA into five aspects: water space: the critical area from the river and lake water body to the land in the riparian zone; water resources: the amount of water in the river and lake; water environment: the quality of water in the river and lake; water ecology:aquatic organisms in the river and lake; and water services:the function of ecosystem services in the river and lake. Based on these five aspects, this paper analyzes the key role of riparian zone vegetation in RLHA. In this paper, the key roles of riparian zone vegetation in RLHA are summarized as follows: stabilizing riverbanks, purifying water quality, regulating water temperature, providing food, replenishing groundwater, providing biological habitats, and beautifying human habitats. This paper analyzes the application of riparian zone vegetation ecological functions in RLH, summarizing the correlation between RLHA indicators and these ecological functions. Moreover, this paper analyzes the advantages of UAV remote sensing technology in the quantitative monitoring of riparian zone vegetation. This analysis is based on the high spatial and temporal resolution characteristics of UAV remote sensing technology and focuses on monitoring the ecological functions of riparian zone vegetation. On this basis, this paper summarizes the content and indicators of UAV quantitative remote sensing monitoring of riparian zone vegetation for RLHA. It covers several aspects: delineation of riparian zone extent, identification of vegetation types and distribution, the influence of vegetation on changes in the river floodplain, vegetation cover, plant diversity, and the impact of vegetation distribution on biological habitat. This paper summarizes the monitoring objects involved in monitoring riparian zones, riparian zone vegetation, river floodplains, and biological habitats, and summarizes the monitoring indicators for each category. Finally, this paper analyzes the challenges of UAV quantitative remote sensing for riparian zone vegetation at the current stage, including the limitations of UAV platforms and sensors, and the complexity of UAV remote sensing data information. This paper envisages the future application prospects of UAV quantitative remote sensing for riparian zone vegetation, including the development of hardware and software such as UAV platforms, sensors, and data technologies, as well as the development of integrated air-to-ground monitoring systems and the construction of UAV quantitative remote sensing platforms tailored to actual management applications.
Oasis cities are central to the economic and social development as well as ecological sustainability in the arid region in Northwest China. This study aims to explore the balance between river health and human well-being of local residents in the Hexi River oasis, while also enhancing the effectiveness of water resource management within the basin. Utilizing the SMI-P method, we construct a ‘Happy River’ evaluation system that integrates goals, criteria, and indicators. We analyze the evaluation index system for ‘Happy River’ construction in the study area, specifically the Zhangye City section of the Heihe River Basin, and derive a comprehensive evaluation value for the ‘Happy River’ initiative. Additionally, we assess the fit attribute of the evaluation system using the coupled coordination degree model and harmony degree theory, thereby enhancing the rationality of the evaluation method and ensuring a more thorough examination process. The results indicate that from 2017 to 2021, the urban wastewater treatment rate and the degree of water quality excellence in the Zhangye City section of the Black River Basin represent the highest and lowest weights, respectively, within the evaluation system. This suggests that improving the quality of the urban water environment has emerged as the primary factor influencing the assessment of the Happy River during the construction of the Happy River and Happy Lake. Moreover, ecological health is identified as the most significant criterion in the evaluation system, serving as the main factor affecting residents’ perceptions of happiness related to rivers and lakes. Over the five-year period, the happiness level in the study area improved from “relatively happy” to “very happy”, while the coupling coordination degree increased from 0.605 to 0.687, indicating a gradual progression toward coordinated development. Simultaneously, the harmony degree rose from 0.527 to 0.601, suggesting a tendency towards a condition of basic harmony. Additionally, the happiness index increased from 76.71 to 81.97, transitioning from a state of happiness to one of very high happiness. The composite index also improved, rising from 0.459 to 0.526, which demonstrates the preliminary success of the ‘Happy River’ construction efforts in the study area. The evaluation system and model of the ‘Happy River’, along with the final results of this study, can serve as theoretical references for the development of similar initiatives in typical characteristic rivers within the arid region of Northwest China.
As a top-down type of water regulation, the River Chief System (RCS) in China has effectively enhanced urban water quality. Simultaneously, environmental control significantly impacts the financial performance of enterprises. In recent years, the tension between environmental protection and economic development has escalated, underscoring the undeniable economic ramifications of stringent water regulations. Enterprises are the fundamental agents of economic activities and environmental impact, thus becoming the primary targets of water environment regulatory policies. This study adopts the differences-in-differences (DID) method and uses a sample of listed enterprises in the Yangtze River Economic Belt region from 2010 to 2021 to study the impact of the RCS on the financial performance of enterprises. The results show that the RCS harms the financial performance of enterprises. This impact primarily manifests through increased environmental protection investments. Conversely, the RCS does not have a positive influence on enterprises’ technological innovation. This indicates the challenge of stringent top-down environmental regulations in stimulating short-term technological advancements and enhancing enterprise performance. Moreover, the adverse effects of the RCS on financial performance are notably pronounced for non-state-owned enterprises and those located in the upper Yangtze River Economic Belt. This suggests that private enterprises and those in less-developed regions exhibit lower resilience to top-down environmental regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.