2023
DOI: 10.18280/mmep.100135
|View full text |Cite
|
Sign up to set email alerts
|

The Implementation of RFM Analysis to Customer Profiling Using K-Means Clustering

Abstract: The vast development of information technology causes an explosion in the amount of data, yet the data must be processed to obtain useful insights. The use of data is needed to study the needs, behavior, and customer's value which are meant to build better relationships or what is often referred to Customer Relationship Management (CRM). As the company grows, data is getting abundant and more difficult to interact directly with customers and problems such as marketing campaigns that are less effective can resu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 9 publications
0
2
0
2
Order By: Relevance
“…In this study, the elbow method is used to determine the optimum amount of K, where the optimum location of the K value is at the "elbow" [14]. The elbow method is a popular approach to ascertain the best number of clusters.…”
Section: Cluster Testingmentioning
confidence: 99%
“…In this study, the elbow method is used to determine the optimum amount of K, where the optimum location of the K value is at the "elbow" [14]. The elbow method is a popular approach to ascertain the best number of clusters.…”
Section: Cluster Testingmentioning
confidence: 99%
“…In this research, implementing the C4.5 data mining method is anticipated to become an alternate decision support system for creating the necessary data. Algorithm C4.5 is required to generate rules in the form of a decision tree by analyzing (1) five attributes of possible donors, such as (a) Recency; (b) Frequency; (c) Monetary; (d) Time; and (e) Decisions (Barus, Nathasya, et al, 2023); (2) Attribute value; (3) Entropy; and (4) Gain (Sumiati et al, 2023). The list is then utilized to determine if an individual would donate again.…”
Section: Introductionmentioning
confidence: 99%
“…Analiz sonuçlarına göre, en iyi müşteriler, kaybedilmeyebilecek müşteriler ve ortalama müşteriler olmak üzere üç tür küme bulunmuştur. (Barus et al, 2023) Müşteriler, son zamanlarda alışveriş yaptıkları bir şirketi ve markasını gelecekteki alışverişler için daha kolay hatırlarlar. Son zamanlarda bir şirketten ödeme yapmış olan tüketicilerin, aylar hatta daha uzun süre boyunca şirketten alışveriş yapmamış olan müşterilere kıyasla gelecekte başka bir alışveriş yapma olasılıkları daha yüksektir.…”
unclassified