The flat cross wedge rolling is an advanced forming process, which is used to produce thread shafts. In this work, a finite element model of flat cross wedge rolling thread shafts was established by the DEFORM-3D, and the effect of the forming angle, spreading angle, helix angle and flank angle on forming quality are investigated. The research results show that the forming angle, spreading angle, helix angle have a significant influence on the position of the die wedge-in point. The angle designed wrongly makes the die wedge-in point unable to be aligned correctly, causing defects such as slipping in the process, repeated rolling of formed thread, thin or incomplete tooth shapes. The flank angle mainly makes an impact on the axial force. Reducing the right flank angle or increasing the left flank angle can effectively improve the imbalance of axial force to obtain high-quality thread shafts. Through the experiment of flat cross wedge rolling thread shafts, the data comparison demonstrates that the error of the external dimension of formed parts is small, proving the reliability of the rolling parameter selection.