ImportanceEndovascular intervention for peripheral artery disease (PAD) carries nonnegligible perioperative risks; however, outcome prediction tools are limited.ObjectiveTo develop machine learning (ML) algorithms that can predict outcomes following endovascular intervention for PAD.Design, Setting, and ParticipantsThis prognostic study included patients who underwent endovascular intervention for PAD between January 1, 2004, and July 5, 2023, with 1 year of follow-up. Data were obtained from the Vascular Quality Initiative (VQI), a multicenter registry containing data from vascular surgeons and interventionalists at more than 1000 academic and community hospitals. From an initial cohort of 262 242 patients, 26 565 were excluded due to treatment for acute limb ischemia (n = 14 642) or aneurysmal disease (n = 3456), unreported symptom status (n = 4401) or procedure type (n = 2319), or concurrent bypass (n = 1747). Data were split into training (70%) and test (30%) sets.ExposuresA total of 112 predictive features (75 preoperative [demographic and clinical], 24 intraoperative [procedural], and 13 postoperative [in-hospital course and complications]) from the index hospitalization were identified.Main Outcomes and MeasuresUsing 10-fold cross-validation, 6 ML models were trained using preoperative features to predict 1-year major adverse limb event (MALE; composite of thrombectomy or thrombolysis, surgical reintervention, or major amputation) or death. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intraoperative and postoperative data.ResultsOverall, 235 677 patients who underwent endovascular intervention for PAD were included (mean [SD] age, 68.4 [11.1] years; 94 979 [40.3%] female) and 71 683 (30.4%) developed 1-year MALE or death. The best preoperative prediction model was extreme gradient boosting (XGBoost), achieving the following performance metrics: AUROC, 0.94 (95% CI, 0.93-0.95); accuracy, 0.86 (95% CI, 0.85-0.87); sensitivity, 0.87; specificity, 0.85; positive predictive value, 0.85; and negative predictive value, 0.87. In comparison, logistic regression had an AUROC of 0.67 (95% CI, 0.65-0.69). The XGBoost model maintained excellent performance at the intraoperative and postoperative stages, with AUROCs of 0.94 (95% CI, 0.93-0.95) and 0.98 (95% CI, 0.97-0.99), respectively.Conclusions and RelevanceIn this prognostic study, ML models were developed that accurately predicted outcomes following endovascular intervention for PAD, which performed better than logistic regression. These algorithms have potential for important utility in guiding perioperative risk-mitigation strategies to prevent adverse outcomes following endovascular intervention for PAD.