2022
DOI: 10.48550/arxiv.2211.03054
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The Importance of Suppressing Complete Reconstruction in Autoencoders for Unsupervised Outlier Detection

Abstract: Autoencoders are widely used in outlier detection due to their superiority in handling high-dimensional and nonlinear datasets. The reconstruction of any dataset by the autoencoder can be considered as a complex regression process. In regression analysis, outliers can usually be divided into high leverage points and influential points. Although the autoencoder has shown good results for the identification of influential points, there are still some problems when detect high leverage points. Through theoretical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
(18 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?