It is becoming increasingly apparent that future progress in diamond chemical vapor deposition depends on deeper understanding of the underlying mechanism of surface processes. Substantial efforts toward this goal have led to several conclusions on which consensus is beginning to emerge. Among them are the mediating role of hydrogen atoms, generic features of the growth kinetics, thermodynamic stability of reconstructed (100) surfaces, and the insertion reaction of methyl into (100)-(2x1) dimers. Despite these efforts, an overall picture of diamond growth in terms of elementary processes is still lacking. In this paper, the current state of mechanistic understanding is reviewed, emphasizing common themes, and new results are presented. Among the latter are the effect of reaction reversibility on surface morphology, surface migration, and a new mechanism for diamond growth from acetylene.