Big data has brought a new round of information revolution. Faced with the goal of full coverage of audit and supervision, making full use of big data is the main method to promote the realization of the goal of full coverage of audit and supervision. Data analysis and utilization is an indispensable task of auditing. Actively exploring multidimensional and intelligent data analysis methods and developing big data audit cases are the new development direction of auditing. The convolutional neural network’s excellent ability to extract data features well meets the relevant requirements of financial auditing. However, in practical applications, convolutional neural networks often encounter various problems such as disappearance of gradients and difficulty in convergence, which reduces its expected performance in financial audit applications. In order to make the performance of the financial audit model based on convolutional neural network more excellent, after summarizing the characteristics of genetic algorithm, this article applies genetic algorithm to the optimization of the convolutional neural network model. We applied genetic algorithm to optimize the initial weights of the convolutional neural network. The error sensitivity and learning rate changes of different hidden layers are discussed, the influence of different learning rates on the convergence speed of convolutional neural networks is analyzed, and the recognition performance of other algorithms on financial audit data sets is simulated and compared. We conducted experiments on the network structure and parameter optimization on the financial audit database. The results show that the recognition error rate of the convolutional neural network model with improved learning rate algorithm in the financial audit data set is lower than that of the multilayer feedforward network, so it has better performance.