The hallmark feature in cancer is uncontrolled cell-division and altered protein expression. Currently, cancer is one of the most detrimental diseases encountered by a large population across the globe. However, an absolute treatment strategy has still not been achieved by the researchers. Further, molecular mechanism and therapeutic to combat this lethal disease is a baffling issue. Molecular chaperones and ubiquitin proteasome system is mainly responsible for the maintenance of protein homeostasis and thus playing a crucial role in the cancer pathophysiology. Molecular chaperones are a superfamily of proteins which expressions are triggered under physiological, pharmacological and environmental insults and playing a protective role for cell survival. However, beyond a threshold of protection, molecular chaperones are unable to provide proper shape of non functional proteins that accumulate unwanted protein the cellular milieu. In order to get rid off these accumulated proteins ubiquitin proteasome system comes into action where an E3 ligase, specific enzymes of ubiquitination system, play a decisive role in the turnover of many essential regulatory proteins involved in cancer. It also mediates numerous functions, for instance, cell death, cell growth and DNA repair. Since, both molecular chaperones and E3 ligases have been involved in the progression of cancers it is necessary to understand and implement the role of these two molecules to use as diagnostic markers to treat cancer. Herein, we have comprehensively discussed the functional role of molecular chaperones, their differential protein expressions and a possible correction mechanism in cancer. Furthermore, comprehensive information has been documented regarding E3 ligases and their associated role in cancer that may be used as potential diagnostic biomarker for the treatment of various cancers.