Dichloroacetate (DCA) and trichloroacetate (TCA) are drinking water chlorination byproducts previously found to induce oxidative stress (OS) in hepatic tissues of B6C3F1 male mice. To assess the effects of mixtures of the compounds on OS, groups of male B6C3F1 mice were treated daily by gavage with DCA at doses of 7.5, 15, or 30 mg/kg/day, TCA at doses of 12.5, 25, or 50 mg/kg/day and three mixtures of DCA and TCA (Mix I, Mix II and Mix III), for 13 weeks. The concentrations of the compounds in Mix I, II and III corresponded to those producing approximately 15, 25 and 35%, respectively, of maximal induction of OS by individual compounds. Livers were assayed for production of superoxide anion (SA), lipid peroxidation (LP) and DNA single strand breaks (SSB). DCA, TCA and the mixtures produced dose-dependent increases in the three tested biomarkers. Mix. I and II effects on the three biomarkers, and Mix. III effect on SA production were found to be additive, while Mix. III effects on LP and DNA-SSB were shown to be greater than additive. Induction of OS in livers of B6C3F1 mice after sub-chronic exposure to DCA and TCA was previously suggested as an important mechanism in chronic hepatotoxicity/hepatocarcinogenicity induced by these compounds. Hence, there may be rise in exposure risk to these compounds as these agents co-exist in drinking water.