The inflammasome is a vital part of the host’s innate immunity activated by cellular infection or stress. Our previous research identified the bovine SP110c isoform (bSP110c) as a novel activator of the inflammasome that promoted the secretion of proinflammatory cytokines IL-1β and IL-18 in macrophages infected with Listeria monocytogenes or stimulated with lipopolysaccharide (LPS). However, the exact molecular mechanism for inhibiting bSP110c-induced inflammasome activation requires further clarification. Here, the researchers identified bovine DDX3X (bDDX3X) as an NLRP3-associated protein and an inhibitor of the bSP110c-induced inflammasome in the human THP1 macrophage cell line. Immunoprecipitation showed that bDDX3X interacted with the bSP110c CARD domain via its helicase domain. The co-expression of bSP110c and bDDX3X in THP1 macrophages significantly prevented the bSP110c-induced activation of inflammasomes. In addition, both bDDX3X and bSP110c interacted with bovine NLRP3 (bNLRP3), and bDDX3X enhanced the interaction between bSP110c and bNLRP3. The expression of bDDX3X in nigericin-stimulated THP1 macrophages significantly suppressed NLRP3 inflammasome activation, ASC speck formation, and pyroptosis. These findings demonstrate that bDDX3X negatively regulates the bSP110c-mediated inflammatory response by restricting the activation of the NLRP3 inflammasome. This discovery unveils a novel regulatory mechanism involving bDDX3X and bSP110c in coordinating inflammasome activation and subsequent cell-fate decisions in LPS-treated macrophages and, in turn, constitutes a step forward toward the implementation of marker-assisted selection in breeding programs aimed at utilizing cattle’s immune defenses.