The death rates due to infection in patients receiving long-term antibiotic treatment and hospitalized patients are quite alarming. Treatment of multidrug-resistant strains of Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, which cause widespread nosocomial infection, has become a global problem. Alternative treatment methods are needed for these species, which use all their resistance mechanisms day by day. Recently, it has been seen that iodine (lugol) solution has been used in the treatment of many infections. Significant results are observed, especially for nosocomial and wound infections. The literature on the antimicrobial effect of Lugol solution is very limited. In order to scientifically support such treatments, we aimed to investigate the antimicrobial effect of lugol on resistant bacteria in a laboratory environment. In our laboratory, we have previously isolated Acinetobacter baumannii, Shigella sonneii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains with known antibiotic resistance. For these isolates, the agar dilution method prepared with different concentrations of lugol and the Broth Microdilution Method were used. As a result of our study, it was observed that drinkable Lugol solution affects multidrug-resistant microorganisms at very low concentrations. Thus, Lugol's success in infection treatments will be scientifically supported.