Purpose
By considering the rapid and continuous increase of housing prices in Turkey recently, this study aims to examine the determinants of the residential property price index (RPPI). In this context, a total of 12 explanatory (3 macroeconomic, 8 markets and 1 pandemic) variables are included in the analysis. Moreover, the residential property price index for new dwellings (NRPPI) and the residential property price index for old dwellings (ORPPI) are considered for robustness checks.
Design/methodology/approach
A quantile regression (QR) model is used to examine the main determinants of RPPI in Turkey. A monthly time series data set for the period between January 2010 and October 2020 is included. Moreover, NRPPI and ORPPI are examined for robustness.
Findings
Predictions for RPPI, NRPPI and ORPPI are carried out separately at the country (Turkey) level. The results show that market variables are more important than macroeconomic variables; the pandemic and rent have the highest effect on the indices; The effects of the explanatory variables on housing prices do not change much from low to high levels, the COVID-19 pandemic and weighted average cost of funding have a decreasing effect on indices while other variables have an increasing effect in low quantiles; the pandemic and monetary policy indicators have a negative and significant effect in low quantiles whereas they are not effective in high quantiles; the results for RPPI, NRPPI and ORPPI are consistent and robust.
Research limitations/implications
The results of the study emphasize the importance of the pandemic, rent, monetary policy indicators and interest rates on the indices, respectively. On the other hand, focusing solely on Turkey and excluding global variables is the main limitation of this study. Therefore, the authors encourage researchers to work on other emerging countries by considering global variables. Hence, future studies may extend this study.
Practical implications
The COVID-19 pandemic and market variables are determined as influential variables on housing prices in Turkey whereas macroeconomic variables are not effective, which does not mean that macroeconomic variables can be fully ignored. Hence, the main priority should be on focusing on market variables by also considering the development in macroeconomic variables.
Social implications
Emerging countries can make housing prices stable and affordable, which will increase homeownership. Hence, they can benefit from stability in housing markets.
Originality/value
The QR method is performed for the first time to examine housing prices in Turkey at the country level according to the existing literature. The results obtained from the QR analysis and policy implications can also be used by other emerging countries that would like to increase homeownership to provide better living conditions to citizens by making housing prices stable and keeping them under control. Hence, countries can control housing prices and stimulate housing affordability for citizens.