Background: Genetic diversity is needed to preserve the capability of a species to survive to environmental changes. Due to the presence of small isolated populations, relict species such as Magnolia are at an elevated extinction risk. In recent years, many new species of Magnolia have been described in Mexico, each one classified by its category of risk. To achieve conservation, knowledge of their basic level of biological diversity is essential to design adequate conservation plans and avoid the negative consequences of genetic loss. Here, we implemented nuclear microsatellite markers to assess 13 populations of three new species of Magnolia that were all previously considered to be Magnolia pacifica. We aimed to evaluate the genetic agreement with the distinction of these three different morphological species (e.g., their species integrity) and to determine their levels of genetic diversity and their geographic distribution to propose conservation strategies. Results: We found high levels of genetic diversity compared to other Magnolia species with no sign of inbreeding. We found a small effective population size and a prevalence of bottlenecks in some populations. The patterns of genetic subdivision did not support the current morphological distinction of three different species. Instead, we suggest that the genetic structure pattern is the result of historical connectivity and the continuous natural fragmentation of the forest. Thus, an isolation by distance pattern may have had an important role in shaping allele frequencies, producing local genetic differences. Conclusions: We argue that a major threat underlies the actual trends of habitat loss, which can directly impact the loss of genetic diversity in the current adult individuals and consequently, increase the risk of extinction in further generations. For conservation purposes, we suggest combining in situ and ex situ conservation of populations with the maintenance of connectivity among the local populations.