Background Fine-wire circular frame (Ilizarov) fixators are hypothesized to generate favorable biomechanical conditions for fracture healing, allowing axial micromotion while limiting interfragmentary shear. Use of half-pins increases fixation options and may improve patient comfort by reducing muscle irritation, but they are thought to induce interfragmentary shear, converting beam-to-cantilever loading. Little evidence exists regarding the magnitude and type of strain in such constructs during weightbearing. Questions/purposes This biomechanical study was designed to investigate the levels of interfragmentary strain occurring during physiologic loading of an Ilizarov frame and the effect on this of substituting half-pins for finewires. Methods The ''control'' construct was comprised of a four-ring all fine-wire construct with plain wires at 90°-crossing angles in an entirely unstable acrylic pipe synthetic fracture model. Various configurations, substituting half-pins for wires, were tested under levels of axial compression, cantilever bending, and rotational torque simulating loading during gait. In total three frames were tested for each of five constructs, from all fine-wire to all half-pin. Results Substitution of half-pins for wires was associated with increased overall construct rigidity and reduced planar interfragmentary motion, most markedly between all-wire and all-pin frames (axial: 5.9 mm ± 0.7 vs 4.2 mm ± 0.1, mean difference, 1.7 mm, 95% CI, 0.8-2.6 mm, p \ 0.001; torsional: 1.4% ± 0.1 vs 1.1% ± 0.0 rotational shear, mean difference, 0.3%, 95% CI, 0.1%-0.5%, p = 0.011; bending: 7.5°± 0.1 vs 3.4°± 0.1, mean difference, À4.1°, 95% CI, À4.4°to À3.8°, p \ 0.001). Although greater transverse shear strain was observed during axial loading (0.4% ± 0.2 vs 1.9% ± 0.1, mean difference, 1.4%, 95% CI, 1.0%-1.9%, p \ 0.001), this increase is unlikely to be of clinical relevance given the current body of evidence showing bone healing under shear strains of up to 25%. The greatest transverse shear was observed under bending loads in all fine-wire frames, approaching 30% (29% ± 1.9). This was reduced to 8% (±0.2) by incorporation of sagittal plane half-pins and 7% (±0.2) in all half-pin frames (mean difference, À13.2% and À14.0%, 95% CI, À16.6% to 9.7% and À17.5% to À10.