Dense fog appears to be decreasing in many parts of the world, especially in western cities. Dense fog (visibility \400 m) is disappearing in the urban southern California area also. There the decrease in dense fog events can be explained mainly by declining particulate levels, Pacific sea surface temperatures (SST), and increased urban warming. Using hourly data from 1948 to the present, we looked at the relationship between fog events in the region and contributing factors and trends over time. Initially a strong relationship was suggested between the occurrence of dense fog and the phases of an atmosphere-ocean cycle: the Pacific Decadal Oscillation (PDO). However, closer analysis revealed the importance to fog variability of an increasing urban heat island and the amount of atmospheric suspended particulate matter. Results show a substantial decrease in the occurrence of very low visibilities (\400 m) at the two airport stations in close proximity to the Pacific Ocean, LAX (Los Angeles International) and LGB (Long Beach International). A downward trend in particulate concentrations, coupled with an upward trend in urban temperatures were associated with the decrease in dense fog occurrence at both LAX and LGB. LAX dense fog that reached over 300 h in 1950 dropped steadily, with 0 h recorded in 1997. Since 1997, there has been a slight recovery with both 2008 and 2009 recording over 30 h of dense fog at both locations. In this study we examine whether the upturn is a temporary reversal of the trend. To remove the urban effect, we also included fog data from Vandenberg Air Force Base (VBG), located in a relatively sparsely populated area approximately 200 km to the north of metropolitan Los Angeles. Particulates, urban heat island, and Pacific SSTs all seem to be contributing factors to the decrease in fog in southern California, along with large-scale atmosphereocean interaction cycles. Case studies of local and regional dense fog in southern California point to the importance of strong, low inversions and to a lesser contributor, Santa Ana winds. Both are associated with large-scale atmospheric circulation patterns, which have changed markedly over the period of studied. These changes point to continued decreases in dense fog in the region.