This paper aims to evaluate the synthesis and annealing parameters for production of nanometric Bi 4 Ti 3 O 12 and its properties. The powders were obtained through the solution combustion route and the impacts of annealing temperature on the materials' physicochemical features as well as their optical and electrical properties were investigated. Thus, the prepared powders were annealed at 600ºC, 700ºC and 800ºC and then characterized by several techniques. The results demonstrated that the combustion method was effective for production of nanocrystalline powders with high levels of purity. A trend for particle and crystallite growth was observed as the calcination temperature increased. X-Ray, HRTEM and Raman spectroscopy confirmed the crystalline nature of the powders, whereas impedance spectroscopy demonstrated a reduction of electrical resistance according to the calcination temperature applied. Optical properties were not highly influenced by annealing. The temperature of 600ºC was appropriate to produce crystalline particles with desirable low sizes for application.