BackgroundPrevious studies demonstrated that tendon-derived stem cells (TDSCs) were vital healing cells and that mRNA expression of anti-inflammatory cytokine IL-6 was significantly upregulated in injured tendons. The aim of the present study was to investigate the effects of IL-6 on the TDSCs in vitro.Material/MethodsTDSCs isolated from the Achilles tendons in SD rats were co-cultured with various concentrations of IL-6. Cell proliferation, cell cycle analysis, quantitative real-time PCR, western blotting analysis, and statistical analysis were used in the study.ResultsThe result showed that IL-6 strongly increased proliferation capability, and induced cell cycle activation and transition into G2/M phase from G1 phase in TDSCs. However, IL-6 treatment strongly inhibited gene expression of Scleraxis, Collagen 1, Tenomodulin, Collagen 3, Early Growth Response Protein 1, Decorin, Lumican, Biglycan and Fibromodulin in TDSCs. It also strongly inhibited protein expression of tendon cell markers like scleraxis, collagen 1, collagen 3, and tenomodulin. IL-6 treatment strongly activated the JAK/Stat3 signaling pathway in TDSCs. Furthermore, WP1066, a JAK/Stat3 signaling pathway inhibitor, abrogated the effects of IL-6 on TDSCs.ConclusionsThese findings indicated that IL-6 might exert dual effects on TDSCs in vitro: strongly enhancing their proliferation but inhibiting their tenogenic differentiation via the JAK/Stat3 pathway.