Recent reports highlight that human decision-making is influenced by the time of day and whether one is a morning or evening person (i.e., chronotype). Here, we test whether these behavioral effects are associated with endogenous biological rhythms. We asked participants to complete two well-established decision-making tasks in the morning or evening: the matrix task (an ethical decision task) and the balloon analog risk task (BART; a risk-taking task), and we measured their chronotype in two ways. First, participants completed a self-report measure, the Horne-Östberg Morningness-Eveningness Questionnaire (MEQ). Second, we measured the expression of two circadian clock-regulated genes—Per3 and Nr1d2—from peripheral clock cells in participants’ hair follicle samples. Using a cosinor model, we estimated the phase of the peripheral clock and assigned RNA chronotypes to participants with advanced (larks) or delayed (owls) phases. The behavioral data were analyzed independently for self-reported (MEQ) and RNA-based chronotypes. We find that significant chronotype and/or time-of-day effects between larks and owls in decision-making tasks occur only in RNA-based chronotypes. Our results provide evidence that time-of-day effects on decision-making can be explained by phase differences in oscillating clock genes and suggest that variation in the molecular clockwork may influence inter-individual differences in decision-making behavior.