Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Mycorrhization has been an integral part of plants since colonization by the early land plants. Over decades, substantial research has highlighted its potential role in improving nutritional efficiency and growth, development and survival of crop plants. However, the focus of this review is trees. Evidence have been provided to explain ecological and physiological significance of mycorrhization in trees. Advances in recent technologies (e.g., metagenomics, artificial intelligence, machine learning, agricultural drones) may open new windows to apply this knowledge in promoting tree growth in forest ecosystems. Dual mycorrhization relationships in trees and even triple relationships among trees, mycorrhizal fungi and bacteria offer an interesting physiological system to understand how plants interact with other organisms for better survival. Besides, studies indicate additional roles of mycorrhization in learning, memorizing and communication between host trees through a common mycorrhizal network (CMN). Recent observations in trees suggest that mycorrhization may even promote tolerance to multiple abiotic (e.g., drought, salt, heavy metal stress) and biotic (e.g. fungi) stresses. Due to the extent of physiological reliance, local adaptation of trees is heavily impacted by the mycorrhizal community. This knowledge opens the possibility of a non‐GMO avenue to promote tree growth and development. Indeed, mycorrhization could impact growth of trees in nurserys and subsequent survival of the inoculated trees in field conditions. Future studies might integrate hyperspectral imaging and drone technologies to identify tree communities that are deficient in nitrogen and spray mycorrhizal spore formulations on them.
Mycorrhization has been an integral part of plants since colonization by the early land plants. Over decades, substantial research has highlighted its potential role in improving nutritional efficiency and growth, development and survival of crop plants. However, the focus of this review is trees. Evidence have been provided to explain ecological and physiological significance of mycorrhization in trees. Advances in recent technologies (e.g., metagenomics, artificial intelligence, machine learning, agricultural drones) may open new windows to apply this knowledge in promoting tree growth in forest ecosystems. Dual mycorrhization relationships in trees and even triple relationships among trees, mycorrhizal fungi and bacteria offer an interesting physiological system to understand how plants interact with other organisms for better survival. Besides, studies indicate additional roles of mycorrhization in learning, memorizing and communication between host trees through a common mycorrhizal network (CMN). Recent observations in trees suggest that mycorrhization may even promote tolerance to multiple abiotic (e.g., drought, salt, heavy metal stress) and biotic (e.g. fungi) stresses. Due to the extent of physiological reliance, local adaptation of trees is heavily impacted by the mycorrhizal community. This knowledge opens the possibility of a non‐GMO avenue to promote tree growth and development. Indeed, mycorrhization could impact growth of trees in nurserys and subsequent survival of the inoculated trees in field conditions. Future studies might integrate hyperspectral imaging and drone technologies to identify tree communities that are deficient in nitrogen and spray mycorrhizal spore formulations on them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.