The expression of membrane type-1 matrix metalloproteinase (MT1-MMP) in cancer cells is critical for understanding the development, invasion and metastasis of cancers. In this study, we devised an interference-free surface-enhanced Raman scattering (SERS) nanoprobe with high selectivity and specificity for MT1-MMP. The nanoprobe was comprised of silver core-silica shell nanoparticle with a Raman reporter tag (4-mercaptobenzonitrile) embedded in the interface. Moreover, the nitrile group in 4-mercaptobenzonitrile shows a unique characteristic peak in the Raman-silent region (1800-2800 cm-1), which eliminates spectral overlapping or background interference in the Raman fingerprint region (500-1800 cm-1). After surface modification with a targeting peptide, the nanoprobe allowed visualization and evaluation of MT1-MMP in breast cancer cells via SERS spectrometry. This interference-free, peptide functionalized SERS nanoprobe is supposed to be conducive to early diagnosis and invasive assessment of cancer in clinical settings.