Summary
We have previously shown that long-term estrogen (E2) replacement lowers blood pressure (BP) and improves the cardiovascular autonomic control in ovariectomized (OVX) rats. In this study, we investigated whether constitutive and/or inducible nitric oxide synthase (NOS) modulate these E2 effects.We evaluated changes in BP, myocardial contractility index (dP/dtmax), and power spectral indices of hemodynamic variability following selective inhibition of eNOS [N5-(1-iminoethyl)-L-ornithine; L-NIO], nNOS (Nω-propyl-L-arginine; NPLA), or iNOS (1400W) in telemetered OVX rats treated for 16 weeks with (OVXE2) or without (control, OVXC) E2.OVXE2 rats exhibited: (i) reduced BP, and increased dP/dtmax, (ii) cardiac parasympathetic dominance as reflected by the reduced low-frequency (LF, 0.25–0.75 Hz)/high-frequency (HF, 0.75–3 Hz) ratio of interbeat intervals (IBILF/HF), and (iii) reduced LF oscillations of systolic BP, suggesting a reduced vasomotor sympathetic tone.eNOS inhibition (L-NIO, 20 mg/kg i.p.) elicited a shorter-lived pressor response in OVXE2, than in OVXC, rats along with reductions in dP/dtmax and increases in the spectral index of spontaneous baroreflex sensitivity (index α). NPLA (1 mg/kg i.p.) reduced BP and increased IBILF/HF ratio in OVXE2, but not OVXC rats. The iNOS inhibitor 1400W (5 mg/kg i.p.) caused no hemodynamic changes in OVXC or OVXE2 rats.Overall, constitutive NOS isoforms exert restraining tonic modulatory BP effects, which encompass eNOS-mediated reduction and nNOS-mediated elevation in BP in OVXE2 rats. Baroreflex facilitation, and dP/dtmax reductions might account for the shorter pressor action of L-NIO in E2-treated, compared with untreated, OVX rats.