Complex systems have become a popular lens for analyzing cities and complexity theory has many implications for urban performance and resilience. This paper develops a typology of measures and indicators for assessing the physical complexity of the built environment at the scale of urban design. It extends quantitative measures from city planning, network science, ecosystems studies, fractal geometry, statistical physics, and information theory to the analysis of urban form and qualitative human experience. Metrics at multiple scales are scattered throughout diverse bodies of literature and have useful applications in analyzing the adaptive complexity that both evolves and results from local design processes. In turn, they enable urban designers to assess resilience, adaptability, connectedness, and livability with an advanced toolkit. The typology developed here applies to empirical research of various neighborhood types and design standards. It includes temporal, visual, spatial, scaling, and connectivity measures of the urban form. Today, prominent urban design movements openly embrace complexity but must move beyond inspiration and metaphor to formalize what "complexity" is and how we can use it to assess both the world as-is as well as proposals for how it could be instead.