It is of great significance to study the pattern of displacing methane gas with water in the coal seam water injection process for the prevention and control of gas disasters. A two-phase displacement test device was used to conduct experiments on the water injection of coal samples to displace methane gas under different water injection pressures, and the influence of the water injection pressure on the displacement was analyzed. The test results show that with the same displacement time, the ratio of displaced methane increases with the increase in the water injection pressure. The displacement rate increases with the increase in the water injection pressure at the stage without water discharge, while the water displacement rate under different water injection pressures differed slightly; in the later displacement stage, a higher water injection pressure of the coal sample results in a faster attenuation of the displacement rate and water displacement rate due to the decrease in the methane content in the coal sample. There is a critical water injection pressure to displace methane gas. When the critical water injection pressure is exceeded, the displacement time does not change appreciably. Flowing water can displace a large amount of methane gas in coal, and the methane displacement rate increases with the increase in the water injection pressure. The high solubility of methane in water is the reason for the high methane displacement rate. The results of this study can provide theoretical guidance for coal seam water injection to control gas disasters.