In this study, we used the depth-sensing indentation technique to determine the cracking resistance of different PVD hard coatings deposited on tool steel substrates. By comparison, with the load–displacement curves, measured at the sites of carbide inclusion and a tempered martensite matrix in the D2 tool steel substrate surface, we observed different fracture mechanisms on TiAlN hard coating prepared by sputtering. Additional information about the deformation and fracture phenomena was obtained from the SEM images of FIB cross-sections of both types of indents. We found that the main deformation mechanism in the coating is the shear sliding along the columnar boundaries, which causes the formation of steps on the substrate surface under individual columns. Using nanoindentation test, we also analyzed the cracking resistance of a set of nl-(Cr,Al)N nanolayer coatings with different Cr/Al atomic ratios, which were sputter deposited in a single batch. From the indentation curves, we determined the loads (Fc) at which the first pop-in appears and compared them with the plasticity index H3/E2. A good correlation of both parameters was found. We also compared the indentation curves of the TiAlN coating, which were prepared by cathodic arc evaporation using 1-fold, 2-fold and 3-fold rotation of the substrates. Additionally, on the same set of samples, the fracture toughness measurements were performed by micro-cantilever deflection test. The impact of growth defects on the cracking resistance of the hard coatings was also confirmed.