An autosomal dominant congenital cataract associated with a missense mutation, Arg-116 to Cys (R116C), in the coding sequence of human alphaA-crystallin has been reported. Subsequent study of this mutant, generated by site-directed mutagenesis, showed significant changes in secondary and tertiary structures, partial loss of chaperone activity, and substantially increased oligomeric size. The study presented here aims to show whether these changes are due to the loss of a positive charge at this position or due to the presence of an extra Cys. To show this, Arg-116 in alphaA-crystallin was mutated to Lys (R116K), Cys (R116C), Gly (R116G), and Asp (R116D) and expressed in Escherichia coli cells. The wild-type (alphaA-wt) and mutant proteins were purified by size exclusion chromatography and characterized by measurements of circular dichroism, intrinsic tryptophan fluorescence, and TNS fluorescence and by determination of molecular masses and chaperone function which was assessed as the ability to suppress target protein aggregation or enhance target protein refolding. Mutation of Arg-116 to a Cys or Gly showed very similar changes in structure, oligomerization, and chaperone function which suggest that the presence of this Cys per se is not the cause of the changes. The R116K mutant, on the other hand, had nearly the same structure, oligomeric size, and chaperone function as alphaA-wt, whereas the mutant with an acidic amino acid in this position, R116D, showed drastic changes in protein structure. Thus, a positive charge must be preserved at this position for the structural and functional integrity of alphaA-crystallin.